Arc Length Formula	Explanation
$L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$	Arc length of "nice functions" with respect to x.

1. Find the length of the following curves.
(a) $\frac{3}{4} x-\frac{1}{4}, \quad-1 \leq x \leq 3$.

Solution:

We simply calculate

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
& =\int_{-1}^{3} \sqrt{1+\left[\frac{3}{4}\right]^{2}} d x \\
& =\int_{-1}^{3} \sqrt{\frac{25}{16}} d x \\
& =\left.\frac{5}{4} x\right|_{-1} ^{3} \quad=5 .
\end{aligned}
$$

(b) $12 x=4 y^{3}+3 y^{-1}, \quad 1 \leq y \leq 3$.

Solution:

Let us first find

$$
\begin{aligned}
& f(y)=\frac{1}{3} y^{3}+\frac{1}{4} y^{-1} \\
& f^{\prime}(y)=y^{2}-\frac{1}{4} y^{-2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
L & =\int_{1}^{3} \sqrt{1+\left[y^{2}-\frac{1}{4} y^{-2}\right]^{2}} d x \\
& =\int_{1}^{3} \sqrt{y^{4}+\frac{1}{2}+\frac{1}{16} y^{-4}} d x \\
& =\int_{1}^{3} \sqrt{\left(y^{2}+\frac{1}{4} y^{-2}\right)^{2}} d x \\
& =\int_{1}^{3} y^{2}+\frac{1}{4} y^{-2} d x \\
& =\frac{1}{3} y^{3}-\left.\frac{1}{4} y^{-1}\right|_{1} ^{3}=\frac{53}{6}
\end{aligned}
$$

2. Find b such that the length of the curve $y=1+6 x^{3 / 2}, 0 \leq x \leq b$, is 6 .

Solution:

This time, we know $L=6$, and we want to find b, so we just calculate as usual:

$$
\begin{gathered}
f(x)=1+6 x^{3 / 2} \\
f^{\prime}(x)=9 x^{1 / 2} \\
6=\int_{0}^{b} \sqrt{1+81 x} d x \\
\left.=\left.\frac{1}{81} \cdot \frac{2}{3}(1+81 x)^{3 / 2}\right|_{0} ^{b} \quad \quad \text { using } u=1+81 x\right) \\
=\frac{2}{81 \cdot 3}\left[(1+81 b)^{3 / 2}-1\right] .
\end{gathered}
$$

Solving for b gives

$$
b=\frac{\left(\frac{6 \cdot 81 \cdot 3}{2}+1\right)^{2 / 3}-1}{81} .
$$

Surface Area Formula	Explanation
$S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$	Surface area of "nice functions" rotated about the y-axis.

3. Find the surface areas obtained in the following situations.
(a) rotating the curve $f(x)=\sqrt{1+e^{x}}$ for $0 \leq x \leq 1$ around the x-axis.

Solution:

As usual, we need

$$
\begin{gathered}
f(x)=\sqrt{1+e^{x}}, \\
f^{\prime}(x)=\frac{1}{2}\left(1+e^{x}\right)^{-1 / 2} \cdot e^{x} .
\end{gathered}
$$

Now, we compute

$$
\begin{aligned}
S & =\int_{0}^{1} 2 \pi \sqrt{1+e^{x}} \sqrt{1+\frac{e^{2 x}}{4\left(1+e^{x}\right)}} d x \\
& =2 \pi \int_{0}^{1} \sqrt{1+e^{x}} \sqrt{\frac{e^{2 x}+4 e^{x}+4}{4\left(1+e^{x}\right)}} d x \\
& =2 \pi \int_{0}^{1} \sqrt{1+e^{x}} \sqrt{\frac{\left(e^{x}+2\right)^{2}}{4\left(1+e^{x}\right)}} d x \\
& =2 \pi \int_{0}^{1} \sqrt{1+e^{x}} \frac{e^{x}+2}{2 \sqrt{1+e^{x}}} d x \\
& =\pi \int_{0}^{1} e^{x}+2 d x \quad \\
& =\left.\pi\left(e^{x}+2 x\right)\right|_{0} ^{1} \quad=\pi(e+1) .
\end{aligned}
$$

(b) rotating the curve $f(y)=\sqrt{a^{2}-y^{2}}$ for $0 \leq y \leq a / 2$ and a constant around the y-axis

Solution:

And again,

$$
\begin{aligned}
& f(y)=\sqrt{a^{2}-y^{2}}, \\
& f^{\prime}(y)=\frac{1}{2}\left(a^{2}-y^{2}\right)^{-1 / 2} \cdot-2 y=-\frac{y}{\sqrt{a^{2}-y^{2}}} . \\
& S=\int_{0}^{a / 2} 2 \pi \sqrt{a^{2}-y^{2}} \sqrt{1+\frac{y^{2}}{a^{2}-y^{2}}} d x \\
&= 2 \pi \int_{0}^{a / 2} \sqrt{a^{2}-y^{2}} \sqrt{\frac{a^{2}}{a^{2}-y^{2}}} d x \\
&= 2 \pi \int_{0}^{a / 2} \sqrt{a^{2}-y^{2}} \frac{a}{\sqrt{a^{2}-y^{2}}} d x \\
&= 2 \pi \int_{0}^{a / 2} a d x \\
&=\left.2 \pi(a x)\right|_{0} ^{a / 2} \\
&= 2 \pi\left(\frac{a^{2}}{2}-0\right)=\pi a^{2} .
\end{aligned}
$$

